Weighted Matrix Completion and Recovery with Prior Subspace Information

نویسندگان

  • Armin Eftekhari
  • Dehui Yang
  • Michael B. Wakin
چکیده

A low-rank matrix with “diffuse” entries can beefficiently reconstructed after observing a few of its entries,at random, and then solving a convex program. In manyapplications, in addition to these measurements, potentiallyvaluable prior knowledge about the column and row spaces ofthe matrix is also available to the practitioner. In this paper,we incorporate this prior knowledge in matrix completion—byminimizing a weighted nuclear norm—and precisely quantify anyimprovements. In particular, in theory, we find that reliable priorknowledge reduces the sample complexity of matrix completionby a logarithmic factor; the observed improvement is consider-ably more magnified in numerical simulations. We also presentsimilar results for the closely related problem of matrix recoveryfrom generic linear measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Methods for Denoising Matrix Completion Formulations, with Applications to Robust Seismic Data Interpolation

Abstract. Recent SVD-free matrix factorization formulations have enabled rank minimization for systems with millions of rows and columns, paving the way for matrix completion in extremely large-scale applications, such as seismic data interpolation. In this paper, we consider matrix completion formulations designed to hit a target data-fitting error level provided by the user, and propose an al...

متن کامل

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

A Novel Noise Reduction Method Based on Subspace Division

This article presents a new subspace-based technique for reducing the noise of signals in time-series. In the proposed approach, the signal is initially represented as a data matrix. Then using Singular Value Decomposition (SVD), noisy data matrix is divided into signal subspace and noise subspace. In this subspace division, each derivative of the singular values with respect to rank order is u...

متن کامل

Recovery of signals by a weighted $\ell_2/\ell_1$ minimization under arbitrary prior support information

In this paper, we introduce a weighted l2/l1 minimization to recover block sparse signals with arbitrary prior support information. When partial prior support information is available, a sufficient condition based on the high order block RIP is derived to guarantee stable and robust recovery of block sparse signals via the weighted l2/l1 minimization. We then show if the accuracy of arbitrary p...

متن کامل

Assessment the Optimal Strategies for Municipal Solid Waste Recycling and Recovery Process with the Analysis of SWOT and QSPM in Ardabil

Background and Objectives: Environmental pollution from waste is one of the main problems of municipal waste management. Since evaluation of the recycling and recovery process is one of the most important stages in municipal waste management, this study aimed to determine the optimal strategies for recycling and recycling Ardabil municipal waste by SWOT analysis and QSPM matrix in 2017. Me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1612.01720  شماره 

صفحات  -

تاریخ انتشار 2016